ABSTRACT SUBMISSION - GUIDELINES

Deadline for abstract submission: February 29, 2016

Abstracts received after this date and/or not complying with the presentation guidelines will not be accepted.

All abstracts must be written in English (length maximum 300 words).

Write abstract by using Word.

Font: Arial

Font size: Titles 14; author's name and text 12; affiliation 10

Titles: should consist of no more than 150 characters (space included)

Keywords: maximum 6

References: maximum 3

Following is an example of how you need to prepare the summary
Pollinator convergence and the nature of species’ boundaries in sympatric Ophrys (Orchidaceae)

G. Rossi¹, A. Bianchi²-³, R. Verdi⁴

¹Centro Conservazione Biodiversità (CCB), Università degli Studi di Cagliari, Italy.
²Free University of Brussels, Belgium.
³Institute of Systematic Botany, University of Zurich, Switzerland.
⁴Department Structural and Functional Biology, University of Naples Federico II, Italy.

Corresponding author: Giovanni Rossi (giovanni.rossi@gmail.com)

In the sexually deceptive orchids of the Ophrys genus, species isolation is generally considered ethological and occurs via different, specific pollinators (Coyne and Orr, 2004), but there are cases in which Ophrys species can share a common pollinator and differ in pollen placement on the body of the insect. In that condition, species are expected to be reproductively isolated through a pre-mating mechanical barrier. Here, the relative contribution of pre- versus post-mating barriers to gene flow among two Ophrys species that share a common pollinator and can occur in sympatry is studied.

A natural hybrid zone between O. eleonorae and O. incubacea, sharing the bee Andrena morio (Delforge, 2005) as pollinator, was investigated by analysing floral traits involved in pollinator attraction as odour extracts both for non-active and active compounds (Stöckl et al., 2007) and for labellum morphology. The genetic architecture of the hybrid zone was also estimated with amplified fragment length polymorphism (AFLP) markers, and pollination fitness and seed set of both parental species and their hybrids in the sympatric zone were estimated by controlled crosses.

Although hybrids were intermediate between parental species in labellum morphology and non-active odour compounds, both parental species and hybrids produced a similar odour bouquet for active compounds. However, hybrids produced significantly lower fruit and seed set than parental species, and the genetic architecture of the hybrid zone suggests that they were mostly first-generation hybrids.

The two parental species hybridize in sympatry as a consequence of pollinator overlap and weak mechanical isolation, but post-zygotic barriers reduce hybrid frequency and fitness, and prevent extensive introgression. These results highlight a significant contribution of late post-mating barriers, such as chromosomal divergence, for maintaining reproductive isolation, in an orchid group for which pre-mating barriers are often considered predominant.

Keywords: AFLP, floral scent, hybrid zone, fitness, reproductive isolation.

References: